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Abstract-Steady convective motions inside a rectangular cavity filled with a porous material are examined 
in the large Rayleigh number limit for flows driven by a horizontal temperature gradient. The boundary-layer 
structure on the side walls is determined using an integral relaticns approach. This method leads to results for 
the core mass flux, for the core-temperature gradient and for the heat-transfer characteristics which are in 

excellent agreement with numerical solutions of the boundary-layer equations. 
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NOMENCLATURE 1. INTRODUCTION 

defined by boundary layer profile (Sec- THERMAL convection problems in porous media occur 

tion 4); 

constants in boundary layer profile; 
constant (see 3.10); 

constant (see 3.16); 
constant (see 3.17); 

similarity profile for w (see 3.8); 
similarity profile for T (see 3.6); 
acceleration due to gravity; 
cavity height ; 
permeability; 

cavity aspect ratio (I/h); 

cavity length; 
Nusselt number; 
modified Nusselt number (see 3.20); 
Darcy-Rayleigh number (see 2.5); 
temperature ; 
velocity components; 

Cartesian co-ordinates. 

in a broad spectrum of disciplines ranging from 
chemical engineering to geophysics. Applications in- 
clude heat insulation by fibrous materials, spreading of 
pollutants, and convection in the Earth’s mantle. A 
comprehensive review article has been written by 

Combarnous and Bories [l]. 

Greek symbols 

a, coefficient of thermal expansion ; 

%fz)9 coefficients in equation (4.2); 

6(z), boundary layer thickness; 

97 similarity variable (see 3.7); 

?Z), 

thermal diffusivity ; 

see (4.2) and (4.3); 

v, kinematic viscosity; 

1(1, stream function. 

Superscripts 
, 
1 dimensional quantity ; 

dimensionless quantity. 

Subscripts 

c, m, core values ; 
W. hot wall value. 

This paper is concerned with natural convection in a 
rectangular cavity filled with a porous material. The 
side walls of the cavity are maintained at different 

temperatures. Both this problem and its Newtonian 

fluid counterpart have received less attention than the 

Blnard problem in which the applied temperature 
gradient is aligned with the gravitational field. For a 

Newtonian fluid, thermally driven non-aligned flows 
have been examined over a wide range of Prandtl 
numbers ; this range encompasses the growth of semi- 

conductor materials from the melt [2], atmospheric 
circulations [3], and flows in oil-filled cavities [4]. 

Only steady flows at large Rayleigh numbers are 
considered here. These flows are characterized by a 
stratified inviscid core surrounded by thin thermal 
layers on the cavity walls. For the porous problem, and 
for Newtonian fluids at high Prandtl numbers, the core 
structure is dominated by the boundary layers on the 
vertical walls. An analysis of these boundary layers, 
together with the compatible core structure, was first 
given by Gill [S] for the Newtonian case. Quantitative 
details for the core structure were determined by using 

a modified Oseen approach [6] to integrate the 
boundary-layer equations in the large Prandtl number 
limit. Comparison of the results obtained by this 
technique with numerical solutions of the Boussinesq 
equations [7,8] indicated that the approach led to 
significant errors in the core mass flux and in the core- 
temperature gradient. 

An alternative analytical procedure, based on in- 
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tegrai relations, was recently developed by Blythe and 
Simpkins [9]. This method gave better agreement with 
the numerical solutions for large Prandtl numbers, 
though there was still a discrepancy in the predicted 
core mass flux. Since the integral method was based on 
the boundary-layer equations, whereas the numerical 
work was concerned with the Boussinesq equations, 
this disagreement may be due to the error in the 
boundary-layer approximation. The validity of this 
assertion could be tested by comparing solutions 
obtained from the integral method with exact so- 
lutions of the boundary layer equations, but unfor- 
tunately no such exact solutions are available in the 
large Prandtl number limit. Recently, however, Wal- 
ker and Homsy [lOI gave a numerical solution of the 
boundary-layer equations for the analogous porous 
problem. In the present paper solutions of the porous 
equations are determined using the integral method. 
Provided that the chosen boundary layer profile 
exhibits the correct asymptotic behavior (Section 4), it 
is found that the integral approach gives good agree- 
ment with the numerical solutions. Consequently, it 
does appear that the error in the predicted core mass 
flux for the large Prandtl number problem is as- 
sociated with the boundary layer approximation to the 
Boussinesq equations rather than with the integral 
method itself. It is of interest to note that the porous 
problem has also been analyzed by Weber [II] using 
the Oseen approach, but similar discrepancies between 
the Oseen solution and the numerical solution, es- 
pecially for the core mass flux, are again found to exist 
(Section 5). Recently, Bejan [12,13] has suggested a 
possible modification of the Gill-Weber approach ; his 
analysis is discussed in Section 5. 

2. THE FLOW STRUCTURE 

A steady convection roll is set up within a rec- 
tangular cavity, filled with a porous (Darcy) material, 
by maintaining the vertical boundaries at different 
temperatures. Subject to the Boussinesq approxi- 
mation, the continuity, vorticity and energy equations 
governing the motion can be written in the non- 
dimensional form 

au aw 
a_ + Jr$ = 0, 
X 

aw alai - 
------_ 
ax 25 

R$ 
X (2.2) 

and 

ai= aT a27 a27= 
u- + @-__ = ..-_- + __ 

ax a.7 ax2 az= (2.3) 

The dimensionless variables are defined by 

(u’, w’) = -;(I& W), T’ = f T’,T, 

(x’,z’) = h(Z, Z), (2.4) 

where (ti, w’) are the velocity components with respect 
to the Cartesian co-ordinate system (x’, z’) with z’ = 0 
on the lower horizontal boundary ; I is the cavity length 
and h is the cavity height. On x’ = 1 the temperature T 
= Y, (> 0) and on x’ = 0, T’ = 0. Further, 

Itag Twh2 R=___ 
KVl 

(2.5) 

is a Darcy-Rayleigh number, K is the thermal 
diffusivity, k is the permeability, a is the coefficient of 
thermal expansion, g is the acceleration due to gravity 
and v is the kinematic viscosity. 

Appropriate boundary conditions on the vertical 
walls are 

U=F=O on X=0, 
and 

1 

(2.6) 
U=O, T= L on X= L= 1Jh. 

If the rigid, horizontal boundaries are perfectly 
insulated 

a?+ 
W=-=O on 

a2 
Z=O,l, (2.7) 

but for conducting boundaries the thermal condition is 
replaced by 

$=f on Z=O,l. (2.8) 

The governing equations, and the above boundary 
conditions, possess the centro-symmetric properties 

PI 
l&f, 2) = $qL - x, 1 - Z), 1 
T(x,t)=L-T(L-NJ-Z)J 0.9) 

where the stream function I$ is such that 

(2.10) 

When the Darcy-Rayleigh number is large the flow 
is characterized by thin thermal boundary layers 
adjacent to the vertical walls. In the interior, or core, 
the horizontal temperature gradient is small and the 
motion is equivalent to a parallel stratified shear flow 
with a positive vertical temperature gradient [S, 111. 

Near the vertical boundaries there is a local balance 
between conduction, convection and vorticity. Suit- 
able co-ordinates for the cold-wall boundary layer are 

x= R-‘:2x, ?=z. (2.11) 

Corresponding scalings for the dependent variables 
are 

~(~,z;R)=R’!‘~(x,z;R), 

i”(x,Z;R)= T(x,z;R) I 
(2.12) 

and, to a first approximation, equations (2.1)-(2.3) 
reduce to 
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g+g=o, 1 
aw a7” 
ax=axy I (2.13) 

where u = a+/az, w = - a$/&. Similar results can be 
obtained for the hot wall, but it is more convenient to 
use the symmetry conditions (2.9), see Section 3. 

Appropriate core variables, compatible with equa- 
tions (2.12) and (2.13), are 

$(.f, 5; R) = R”‘$,(X, 5; R), 

7‘(Z, 5; R) = T,(X, Z; R). 
(2.14) 

Substitution in equations (2.1))(2.3) shows that the 
leading approximation to the core solution is of the 
form [S, 111 

Since the core solution must match with the asymp- 
totic behavior, x - cc, of the boundary-layer SO- 

lution it follows that 

and 
T,(z) = T(m,z) = T,(z) 

(2.16) 

$c(z) = $(=,z)= #@SC(z). 

The functions $D(z) and T,(z) must be determined 
by integration of the boundary-layer equations. In 
order to complete the solution it is also necessary to 
specify $, as z -0,l. For this latter condition Gill [S] 
assumed that the vertical boundary layers empty into 
the core so that 

11/,(O) = @r(l) = 0. (2.17) 

Strictly, the determination of these limiting values 
requires the solution of the boundary-layer equations 
for the horizontal surfaces. A horizontal structure, 
compatible with (2.17), has been outlined by Walker 
and Homsy [lo] for insulated boundaries. In the 
conducting case the corresponding boundary-layer 
structure is considerably more complex and a correct 
analytical treatment has not yet been given. Neverthe- 
less, numerical calculations for the Newtonian pro- 
blem (see e.g. [7]) indicate that the core solution is not 
strongly dependent on the thermal characteristics of 
the horizontal surfaces and it appears that equation 
(2.17) may also be a suitable condition on the core 
solution for conducting boundaries. However, the 
validity of (2.17) even for insulated boundaries has 
been questioned by a number of authors (see e.g. @on 
[8)). An alternative assumption concerning the horiz- 
ontal boundary conditions has recently been made by 
Bejan [12,13] who suggests that the overall vertical 
energy flux vanishes as z --+ 0,l. Some comments on 
this assertion are made in Section 5. 

3. INTEGRAL RELATIONS FOR THE BOUNDARY 
LAYER 

For the boundary-layer equations (2.13) and the 
matching conditions (2.16) it can be shown that 

w=T-T T% (3.1) 

d = 

s 

ST, aT 

ii, 
(T- T,)*dx-hdz= --% r=O (3.2) 

and 

$, = -j; (T - T,)dx. (3.3) 

On the wall 

and 

x=0: T = 0, $ = 0 etc. (3.4) 

dT 
as x-+tr3: T-+T,, -, .-.-+0. 

ax (3.5) 

The integral relations (3.2) and (3.3) can be satisfied 
by similarity solutions of the form 

T = T,(z)G(q), (3.6) 

where 

? = x/6(z) (3.7) 

and 6(z) is an appropriate boundary-layer thickness. 
Co~espondingly, from (3.1), 

W = - T,(z)[l - G(q)] = - T,(z)F(v). (3.8) 

At x = 0 these solutions can satisfy only the conditions 
listed in (3.4). Solutions of this type have previously 
been used to analyze similar convection problems in 
viscous fluids at high Prandtl numbers [9]. It is 
straightforward to show that 

where 

i 

CZI 
F*(tl)drl 

a= O 

s 

X, 
F(rl)drl ’ 

b= -F’(O) F(rl)dq. (3.10) 

0 

Equation (3.9) provides a single relationship be- 
tween the unknowns +, and T, which govern the core 
structure. A second relationship can be obtained from 
the boundary-layer solution for the hot wall but, as 
noted earlier, it is more convenient to use the sym- 
metry conditions (2.9). The aspect ratio L is eliminated 
from these conditions, and from the core equation 
(3.9), by the transformation 

T, =+ LT,, $, * L’:‘$,. (3.11) 

Under this transformation (3.9) is invariant and the 
symmetry properties reduce to 
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T,(z)= 1 - T,,(l-z), $jX(z)= $,(1-z). (3.12) 

From (3.9) and (3.12) it can be shown that 

(a - 1)$.(2T,, - l)$ = uT,(l - T,) 
_( 

and hence 

j/, = c[T, (1 - T,,,)]” -@la, 

where c is a constant. 

(3.13) 

Consequently, from (3.13), if IL,, vanishes on the 
horizontal boundaries either T = 0 or T = 1 at z = 
0,l. For dT,/dz > 0 it is necessary that 

T,(O)=O, T,(l)= 1. (3.14) 

It is easily seen from (3.9) and (3.14) that 

dz 
-= 
dT, 

“$c: [‘j-, (1 _ T,,,)]‘z - 3+3, (3.15) 

Since 1 > a > Oand b > 0 (see Section 4). then dT,/dz 
> 0 and (3.14) are appropriate boundary conditions. 
Hence, 

[@(l - @]‘2-3+d@ 

_-._______ 

[f?(l - t))(2-30),=d(? 

=k[2(;1-l), 2(;-l)j 

(3.16) 

where f,(p,q) denotes the incomplete beta function 
normalized with respect to the beta function B@,q), 
[14]. The constant c is defined by 

c-’ = b-‘(1 - a)B~(~ - I). 2(: - 1!/.(3.17) 

From the preceding results it is not difficult to show 
that 

ii/l (1) = 

and 

The variation of the mid-cavity temperature gradient 
with the parameter a is given in Table 1. This gradient 
appears to have a stronger dependence on a than in the 
corresponding high Prandtl number problem [9]. 
Several boundary-layer models for the determination 
of the parameters a and b are discussed in Section 4. 

Table 1. Mid-cavity temperature gradient 
~.___.-_^___._ __..__.._..._ ~_~ ~~ _ 

a 0.5 0.55 0.6 

Overall heat-transfer characteristics for the con- 
vection cell are usually expressed in terms of the 
Nusselt number Nu associated with heat flux across a 
vertical boundary. In terms of the present variables 

or 

N,*=L’~2R-1,2Nu=(l-a)cS[:+ 1, a- 11 

(3.20) 

where Nu* is dependent only on the parameters a and 
b. Values of Nu*, and also of ($ I ),,,, are presented in 
Section 5 for various boundary-layer profiles. 

4. BOUNDARY LAYER PROFILES 

A self-contained theory for the core structure re- 
quires the determination of the parameters a and b. 
Once the boundary-layer profile F(q) has been speci- 
fied these parameters can be obtained from (3.10). The 
profile is subject to the constraints 

F(0) = 1, F”(0) = 0 
and (4.1) 

F(r,)=F’(r)= “‘=o. 1 

In addition, from (2.13)and (2.16)it can be shown that 
the asymptotic decay, x -+ x , of the boundary-layer 
solution has the form 

W = a,(z)e-“‘“‘” + a2(z)e-2;.(z)x + 

with 

(4.2) 

This monotonic decay should be contrasted with the 
oscillatory behavior which occurs for flows at large 
Prandtl numbers [S]. In the latter case better agree- 
ment with numerical solutions is obtained if the model 
profile has the appropriate asymptotic form [9]. This 
also appears to be true for the present porous problem, 
and three possible model profiles are discussed below. 

(a) Polllnomial-exponential prt7jilr 
By analogy with the high Prandtl number solution a 

suitable profile would be of the form F = A(fl)e-‘I. If it 
is assumed that 

F(Y)) = (41 + Azr/)e_” 
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the asymptotic limits in (4.1) are automatically satis- 
fied. The conditions at the origin imply that 

F(q) = (1 + $q)eeq (4.4) 

and hence from (3.10) 

a = 13124 2 0.542, b = 314 = 0.75. 

(b) Exponential projle 
Although the profile (a) does satisfy conditions (4.1), 

equation (4.4) is not strictly of the correct asymptotic 
form. Apart from constant factors, (4.4) implies that F 

N ?e -9 rather than emq as 9 -+ rc;. The rational 
function 

F(v) = 
A, em7 

1 + A,e-” 

does have the correct type of limiting behavior and the 
choice 

F(v) = $& 
satisfies the conditions at the origin. For this profile 

a = 2 - (In 2)-l 5 0.557, b = In 2 2 0.693. (4.7) 

(c) Inner-outer model 
Polynomial profiles, with the asymptotic conditions 

imposed at some finite value of q, are often used in 
conventional boundary-layer calculations. As noted 
earlier, it is important that the asymptotic decay has 
the correct form, though a polynomial profile may 
provide a better fit near to the wall than either of the 
cases discussed above. The two layer profile 

1 [ (4.8) 
= -‘e -of-1) 

7 rl>l 
J 

satisfies all of the conditions (4.1) and is compatible 
with (4.2). At q = 1 the functions F, F’, F” are 
continuous. It follows from (3.10) that 

922 
a = 1715 z 0.538, b = ; z 0.723. (4.9) 

Although there are many profiles which can satisfy 
the limiting conditions (4.1), the core solution is 
influenced by the choice of profile only through the 
parameters a and b. Since the parameter a is defined in 
terms of integrals across the layer [see (3.10)], the 

dependence of the overall core structure on the precise 
form of F(q) is relatively weak. There are, however, 
rational grounds for choosing profile (c). A local power 
series expansion in x can always be developed near x 
= 0. As x - CC the asymptotic behavior is of the form 
(4.2). If it is assumed that these two expansions overlap 
(at say x = 6) then, correct to third order in the x- 
derivatives, the inner and outer solutions do reduce to 
the forms given in (4.8). 

5. RESULTS 

Table 2 lists values of (dT,/dz),,,, ($,),,, and Nu* 
for the profiles discussed in Section 4. Walker and 
Homsy [lo] used a numerical technique to integrate 
the boundary-layer equations and some of their results 
are shown, for comparison, in Table 2. Values de- 
termined by Weber [ 1 l] using the modified Oseen 
approach are also given in Table 2. The latter method 
is known to lead to significant errors in the evaluation 
of the stream function $%(z). However, for each of the 
boundary-layer profiles discussed in Section 4, the 
present integral approach gives good agreement with 
the numerical calculations. 

It is also ofinterest to note that in the corresponding 
high Prandtl number case the integral method over- 
estimates $=(z) when compared with numerical so- 
lutions of the Boussinesq equations. Since the com- 
parison is made here with a numerical solution of the 
boundary-layer equations, it appears that the previous 
discrepancy arose from the inherent error in the 
boundary layer approximation rather than from the 
integral relations approach. 

Figures 1 and 2 show a detailed comparison of the 
various theories for the temperature and the stream 
function respectively. In these figures the calculations 
for the integral method were based on the two-layer 
profile which provides a satisfactory fit with available 
data for the boundary layer structure. Also shown in 
Fig. 1 are some experimental results for the tempera- 
ture profile [15]. Although it is clear that all the 
theories are in reasonable agreement with respect to 
the temperature distribution, the modified Oseen 
approach, as in the high Prandtl number limit, signi- 
ficantly overestimates the local mass flux, see Fig. 2. 
This latter quantity, together with other core quan- 
tities, is accurately predicted by the integral method 
outlined in this paper. 

In the present analysis it has been assumed that the 

Table 2. Values for the core parameters 

Walker and Homsy [lo] 0.75 0.733 0.51 
Weber [3] 0.67 0.87 0.58 
Present profile (a) 0.733 0.747 0.521 
Present profile (b) 0.760 0.718 0.508 
Present profile (c) 0.726 0.734 0.510 
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vertical boundary layers empty into the core, i.e. t/=(O) 
= II/,( 1) = 0. An alternative assumption for the core 
solution has recently been made by Bejan [12,13] who 
suggested that, for insulated boundaries, the overall 
vertical energy flux vanishes as z - 0,l. Bejan has 
extended the analysis of Gill [S] and Weber [11] to 
incorporate this energy flux constraint which, in the 
present notation, implies that 

For the modified Oseen technique. 

(5.1) 

as RJL - ;c’, but for the integral method it can be 
shown that 

(5.2) 

--- Weber(Mod~fled Oseen) 

- F’resent Theory (Profile c) 

Walker-Homsy 

Kiorsfe!d 

“0 02 04 06 

I 

FIG. 1. Temperature profiles in the core. 

Fia. 2. Core stream function 

FK. 3. Predicted heat-transfer characteristics 

Obviously, as R --t /-, these limiting conditions on the 
core solution again reduce to $, (0) = $ ) (1) = 0. 

Experimental results [15] for the Nusselt number, 
and some numerical calculations for the full equations 
[ 161, are shown in Fig. 3 for two different aspect ratios. 
Included in this figure are predictions from the present 
analysis and from Bejan’s extension of Weber’s ana- 
lysis. The present analysis is represented in the ligure 
by profile (c), though as can be seen from Table 2 the 
results for Nu using profile (b) are virtually in- 
distinguishable from those associated with (c). Profile 
(a) leads to results for Nu which are 27; greater than 
those for profile (c). [It is of interest to observe that 
profile (a) is not strictly consistent with the detailed 
asymptotic behavior defined by (4.2).] As noted earlier 
the data based on profile (c)agrees extremely well with 
the numerical calculations of Walker and Homsy [lo]. 
The Weber values for Nu exceed those of the present 
analysis by about 1476. 

Although Bejan’s approach leads to closer agree- 
ment with the numerical and experjmenta~ results, it is 
apparent that the integral solutions also agree well 
with this data. Further, Bankvall’s calculations for t- ’ 
= 7.5 can be approximated by 

Nu z 0.181 R”.51 (5.3) 

for R > 3000. The Weber result, which is the 
asymptotic limit R --t x of Bejan’s analysis, gives 

Nu = 0.212 R” 5. 

whereas the present method yields 

(5.4) 

Nu 2 0.186 R” ’ (5.51 

which compares favorably with (5.3). As noted earlier 
(see Table 2), the asymptotic limit (5.5) also agrees with 
the numerical solutions of Walker and Homsy [lo]. 
These results show that the standard condition rl/ ,,(O) 
= $l,(l) = 0, together with an accurate method for 
integrating the boundary-layer equations, does lead to 
solutions which are compatible with the numerical and 
experimental data. 
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CONVECTION DANS UNE COUCHE POREUSE 

R&&--On etudie les mouvements convectifs stationnaires darts une cavitk rectangulaire emplie dun 
matiriau poreux, dans une large limite de nombre de Rayleigh, pour des boulements gouvernes par un 
gradient horizontal de temperature. La structure de couche limite sur Ies parois est determinee par une 
approche de relations integrales. Cette mithode conduit a des rbultats pour le flux massique principal, pour 
le gradient de temperature dans le coeur et pour le transfert thermique, resultats qui sont en excellent accord 

avec des solutions numeriques des equations de la couche limite. 

KONVEKTION IN EINER PORGSEN SCHICHT 

Z~ammenfa~ung-Station~re Konvektions~wegungen in einem rechteckigen, mit porosem Material 
ge%lIten Behalter wurden in dem groBen Bereich der Rayleigh-Zahl fir Str~mun~en, die durch einen 
horizontalen Temperaturgradienten verursacht werden, untersucht. Die Struktur der Grenzschicht an den 
Seitenwanden wurde durch Verwendung einer intergralen N~herungs~ziehung bestimmt. Dies, Methode 
fiihrt zu Resuhaten fur den Massenstrom, den Temperaturgradienten im Kern und fiir das Warmeiibertra- 
gungsverhalten, das sich in ausgezeichneter Ubkreinstimmung mit den numerischen Losungen der 

Grenzschichtgleichungen befindet. 

KOHBEKHHIl B IIOPMCTOM CJIOE 

AHHoTaunn- MCCRenytoTCXyCTO~'lHBbleKOHBeKTHBHble~Bll~eHI(I(npa60flb~KXrlrCnaXPeneaB~y~~A 
IlpXMOyrOJIbHOfi 3aIIO3IHeHHOii UOPHCTMM MaTepHanOM IIOJIOCTN ilJIR IlOTOKOB. BblJBaHHblX rOpH3OH- 

TanbHbm rpa,zweHToM TeMnepaTypbr. C nobrombm rcrerona ~HTerpa~bHbix cooTnomenn~ onpeaenena 
crpyrrypa norpaaHqnoro cnoa Ha ~OKOBMX crenxax nonocrn. Meron noseonner paccmTaTb ~OTOK 

hiaccbi ii i-paneeaT TehfnepaTypbt B rnpe TeYewm, a Tarme XapaKTep~cT~K~ Tennoo6MeHa. Pe3ynb- 
TaTbI xoporuo cornacyrorcs c YHCfleHHblMH f,erUeHBRMH ypasrfennii norpanminoro CJrOR. 


